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On the Mode

and Square

Correspondence Between Circular

Multimode Tapered Waveguides

CHARLES C, H. TANG

Atmfracf—In an axially straight multimode circular wavegoide taper

excited with a pnre TE$/ dominant mode, the first and ordy converted

mode at and near cutoff is the TM~ mode. It is shown that in an axially

straight multimode square wavegoide taper excited with a pare TE~

dornimnt mode, the TM~ mode corresponding to the TM~ mode in

circular case is not the only first converted mode at and near cntoff.

The overall behavior or coupling mechanism of waveguides is similar

whether the waveguide is rectangular, sqnare, circular, or elliptical: i.e.,

the overall coupling coefficient at cutoff of a converted mode or modes

approaches an infhdty of the order ()-1/4.
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I
N A PREVIOUS PAPER1 it was shown that for the

case of two-mode weak coupling the coefficient of

coupling between the TE~ dominant mode and the

TM: mode in tapered circular waveguides tends to approach
an infinity of the order 0–114at cutoff frequency whereas the

corresponding coefficient of coupling between the TEE

dominant mode and the TM~ mode in tapered square wave-

guides approaches instead a zero of the order 01/4 at cutoff

frequency. No convincing physical interpretation was given

for such surprisingly drastically different coupling behaviors

at cutoff frequency. It is the attempt of this paper to offer a

convincing explanation,

For modes adjacent to the dominant mode, the mode cor-

respondence between circular and square waveguides can be

easily identified. As the mode order goes higher the identi-
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fication of corresponding modes becomes more and more

difficult or impossible. The following mode arrangement

shows the first six mode correspondences between the circu-

lar and square waveguides

I _l + I_ I

TE;

The horizontal brackets indicate that the two modes in each

bracket are degenerate in the sense that they have the same

propagation constant.

In an axially straight multimode circular waveguide taper

excited with a pure TE~ dominant mode, the first and only

converted mode at and near cutoff is the TM: mode. Al-

though TE~ and TM: are degenerate, it can be shown that

the conversion from TE~ mode to TE~ mode is not possible

in this case. In an axially straight square taper excited with

a pure TEE dominant mode, it will be shown that the TM~

mode corresponding to the TM: mode in circular waveguide

is not the only first converted mode at and near cutoff since

TEE mode will be partly converted into TEE simultaneously

with TM~. In other words the circular taper can be treated

as a two-mode weak coupling case, whereas the square taper

must be treated as a three-mode weak coupling case for

rigorous presentation. It is in this sense that the one-to-one

correspondence between the circular and square waveguides

breaks down, when the guides are tapered at and near cutoff.

To show that three-mode coupling is the case for rec-

tangular or square tapers excited by pure TEfi mode with

conversion into both TM~ and TE~ modes simultaneously

at and near cutoff, we shall prove that there is coupling be-

tween TEE and TEE modes. The field configuration of the

three modes at any rectangular or square cross section, as

shown in Fig. 1, can be represented by
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Fig. 1. A rectangular waveguide taper.
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where barred letters denote quantities related to the TM

mode,

and

The

‘Pq(’)‘[(%Y+(-iH1’2=’@@‘3)
boundary conditions along the taper are

Substituting (1) into Maxwell’s equations in rectangular co-

ordinates with due care exercised on differentiations and
boundary conditions, and performing the integration over

the cross section with appropriate normalization factors, we

obtain the following telegraphist’s equations for the three

modes:
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where

rlq2(z) = klQ2 – W2q.L and TIZ2(Z) = Llzz – W2q.L. (6)

For gentle tapers reflections can be neglected and (5) can

be simplified into three coupled first-order differential equa-

tion in forward-wave amplitudes A1o, X12, and A 12 as:

dA 10
—. — rlo(z)Alo + {10E(z)~12+ r1012(z)A12

dz

d~lz
— = – F12(z)Z12 – no&)Alo + r12m(z)A12

dz

where

. ~ _ (4a2 + b2)ho2 1/4

[ (2ab) 2 1}

db
—

. ~ _ (4a2 + bz)~oz -1/4

[ (2ab) 2 1

2

[

~ _ (4a2 + b2)koz l/z
{12E = 4U2 + b2

(2ab)2 1

“G-a:)” (8)

From -(5) and (8) we indeed show that in general TE~,

TM~, and TEE modes are mutually coupled in rectangular

waveguide tapers. However, the second-order cross coupling

between the TM~ and TEE modes vanishes for square

tapers or rectangular tapers with sides a and b changing at

the same rate along the taper axis. For square tapers f12E = O,

(7) can be reducedto (22) in the paper by Tang’ if ‘~- ‘----

ing of the guides is very gentle and the total

lllC ld~~l -

couplings

are all small. This is so because for weak interaction between

all pairs it is often sufficient to consider only the coupling

between two modes at a time.

Examination of coupling coefficients in (8) shows that at

the cutoff of the converted modes ~lOE (TE~ to TM~) and

f,zn (between TEE and TM~) have, respectively, a zero of
the order 01/4 and 01/2, whereas ~Io12(TEE to TEE) has an

infinity of the order &lI’. Accordingly, the overall coupling

coefficient for square tapers in converting the TEE mode

into both TM~ and TEE modes, simultaneously, also tends

to approach at cutoff an infinity of the order 0–1/4 as the

coupling coefficient for circular tapers does in converting

the TE~ mode into the TM: mode at cutoff frequency of

the converted mode. In other words the physically reasonable

conclusion is that the general overall behavior of waveguides

is similar, whether the waveguide is rectangular, square, cir-

cular, or elliptical; i.e., the overall coupling at cutoff of a
converted mode or modes approaches an infinity (H14).

Comparison of the two coupling coefficients ~IoE (TM8

to TM~) and ~lolz (TER to TEE) shows that at frequencies
far away from cutoff the magnitude of ~lo~ is twice as large

as ~loll for square tapers. Accordingly for relatively long

square tapers which go through cutoff region, the total

coupling ~flo~dz between the TEE and TM: modes is

always larger than the total coupling Jflo#z between the

TEE and TEE modes in spite of the fact that at cutoff

tloE-+0’14 and J,OM-XH’. Experimentally this is also veri-

. . fied by measuring and comparing the magnitudes of the
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Without going into details, we write down the solutions:

“0(’)'exp[-12r10dzl[' -llf'O~`z)exp~z' I2fl"~(y)exp[-3~ldydz+ “““

s
1—
(1012(Z) em [SzlJ 2f1012(Y) exp [–A’.]cWZ + .0 “

o 0 1

TM: and TE~ modes in circular waveguide. Since we can-

not separate the degeneracy of TM~ and TEE modes in

square waveguide measurements, the mode correspondence

of TM~eTM~ and TE~-TE~ enables us to remove the

degeneracy and to measure and show that TM:> TE~ in a

circular waveguide by using a long straight, untapered,

transition with a square of sides d at one end and a circle

of diameter d at the other end.

The three-mode case (7) with {,,= = O (square tapers or

rectangular tapers with sides a and b changing at a same

rate) can be solved by an iterative procedure under the

initial boundary conditions:

A,”(o) = 1, ~1,(0) = O, and AI,(O) = O.

where

s, =
s’

(rlo – I’lJdi,
o

& = ~ ‘(r,, – ~Jdi, with i = z, y, or x.
o

For gentle tapering the above solutions can be reduced to

those of two-mode case obtained previously by others.ZJ
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